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bstract

The highest precision in direct mass measurements is obtained with Penning trap mass spectrometry. Most experiments use the interconversion
f the magnetron and cyclotron motional modes of the stored ion due to excitation by external radiofrequency-quadrupole fields. In this work a new
xcitation scheme, Ramsey’s method of time-separated oscillatory fields, has been successfully tested. It has been shown to reduce significantly
he uncertainty in the determination of the cyclotron frequency and thus of the ion mass of interest. The theoretical description of the ion motion
xcited with Ramsey’s method in a Penning trap and subsequently the calculation of the resonance line shapes for different excitation times,
ulse structures, and detunings of the quadrupole field has been carried out in a quantum mechanical framework and is discussed in detail in the
receding article in this journal by M. Kretzschmar. Here, the new excitation technique has been applied with the ISOLTRAP mass spectrometer at

SOLDE/CERN for mass measurements on stable as well as short-lived nuclides. The experimental resonances are in agreement with the theoretical
redictions and a precision gain more than a factor of three was achieved compared to the use of the conventional excitation technique.

2007 Elsevier B.V. All rights reserved.
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. Introduction

The mass and its inherent connection with the atomic and
uclear binding energy is an important property of a nuclide.
hus, precise mass measurements are eminent for various appli-
ations in many fields of physics [1,2]. The required precision of
he atomic mass depends on the physics being investigated. For

adionuclides, which often have half-lives considerably less than
second, it ranges from �m/m = 10−5 to below 10−8 and for

table nuclides even down to �m/m = 10−11. Since the inter-

∗ Corresponding author at: Johannes Gutenberg-Universität, Institut für
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st in masses of short-lived and stable nuclides arises from a
ide range of applications with different requirements on the

ccuracy, a continuous development of, e.g., new ion detec-
ion and preparation techniques is carried on at several facilities
orld-wide [3].
In a Penning trap an ion with a charge-to-mass ratio q/m is

tored in a strong homogeneous magnetic field B0 combined
ith a weak electrostatic quadrupole field [4]. The mass mea-

urement is performed via the determination of the cyclotron
requency νc = qB0/(2πm). To this end, the ion motion is, after
series of preparatory steps, probed by a pulse of quadrupo-

ar rf-radiation. The effect on the ion motion depends on the

requency, duration, amplitude and time-structure of the pulse
nd is detected by a time-of-flight cyclotron-resonance tech-
ique [5]. A resonance is obtained by a series of time-of-flight
easurements at different excitation frequencies near νc. The

mailto:george@uni-mainz.de
dx.doi.org/10.1016/j.ijms.2007.04.003
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Penning trap (see Fig. 1). Therefore, it is valuable for the iden-
tification of the interaction with the external rf-quadrupole field
that is used to convert the magnetron motion into the cyclotron
motion.

Fig. 1. Energy level scheme of the harmonic oscillators for a spinless charged
particle in an ideal Penning trap. ω+ is the modified cyclotron angular frequency,
S. George et al. / International Journal

recision of the resulting value for νc is determined besides the
umber of detected ions by the width and shape of the resonance
urve. In the following, the implementation of Ramsey’s method
f time-separated oscillatory fields in high-precision mass spec-
rometry with Penning traps is described and the effect on the
inewidth and precision in the determination of the resonance
enter is discussed.

In 1949, N.F. Ramsey improved the molecular-beam
agnetic-resonance method of Rabi et al. [6,7] by applying

scillatory fields to the transversing molecular beam in spatially
eparated regions [8]. This replacement of the uniformly applied
eld led to a linewidth reduction to 60% and thus to a more pre-
ise determination of the resonance frequency. For a detailed
escription see [8] and references therein.

In high-precision mass spectrometry the idea to use time-
eparated oscillatory fields to manipulate the radial motions
f confined ions in a Penning trap was first put forward at
SOLTRAP by Bollen et al. in 1992 [9] and later tested at the
MILETRAP experiment [10]. At this time the correct theoret-

cal description of the observed line shapes was not available.
nstead, the observations were discussed qualitatively in terms
f the Fourier transform of the applied pulse sequence. However,
study of the precision gain as well as online mass measure-
ents with the new excitation scheme were not performed.

n the preceding paper [11], a theoretical description of the
btained lineshape has been developed in a quantum mechanical
ramework. In the following, the corresponding experimental
nvestigations and the gain in linewidth and precision of the
Ramsey method” will be presented.

. Theoretical overview

For a quick orientation we review here in a non-technical
anner the physical assumptions forming the basis of the the-

retical model, the approximations necessary for analytical
alculations, and the results that are most important for mass
pectrometry. Details are found in the preceding article [11].

.1. Penning traps with azimuthal quadrupole excitation

.1.1. The ideal Penning trap
The electromagnetic field configuration of an ideal Penning

rap consists of a strong homogeneous magnetic field B0 = B0ez

n the axial direction and an electrostatic quadrupole field E =
∇Φ0 derived from the potential Φ0(x, y, z) = (U)/(2z2

0 +
2
0) · (2z2 − x2 − y2). The motion of a single ion of mass m
nd electric charge q in this electromagnetic field is deter-
ined by the field parameters B0 and U, or equivalently, by the

yclotron frequency νc = ωc/2π = qB0/(2πm) and by the axial

requency νz = ωz/2π with ωz =
√

4qU/(2z2
0 + r2

0), where r0

nd z0 denote the inner radius of the ring electrode and the
istance of the endcap electrodes from the trap center, respec-

ively. The dynamics of a single ion in an ideal Penning trap is
escribed by three uncoupled harmonic oscillators: the oscilla-
or of the cyclotron motion with the frequency ω+ = 1/2(ωc +

ω2
c − 2ω2

z ), the inverted oscillator of the magnetron motion

ω

a
b
c
o
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ith the frequency ω− = 1/2(ωc −
√

ω2
c − 2ω2

z ), and the axial

scillator with the frequency ωz. It is useful to introduce the

bbreviation ω1 =
√

ω2
c − 2ω2

z , so that ω± = 1/2(ωc ± ω1).

ith appropriately chosen canonical coordinates qk, pk (k =
, −, 3) the Hamiltonian for the motion of a single spinless ion

an be written [11] as

0 =ω+ · 1
2 (q2++p2+) − ω− · 1

2 (q2− + p2−)+ωz · 1
2 (q2

3 + p2
3).

(1)

anonical coordinates offer an easy access to the quantized ver-
ion of the theory. Annihilation and creation operators for the
scillator quanta are defined by

ak = 1√
2h̄

(qk + i pk),

a
†
k = 1√

2h̄
(qk − i pk), (k = +, −, 3), (2)

ith commutation relations [a±, a
†
±] = 1, [a±, a

†
∓] = 0, and

a±, a∓] = 0. The Hamiltonian then takes the form

0 = h̄ω+(a†+a+ + 1
2 ) − h̄ω−(a†−a− + 1

2 ) + h̄ωz(a†3a3 + 1
2 ).

(3)

he quantized version of the theory provides a clear picture of the
nergy level scheme associated with the ion motion in an ideal
z is the angular frequency, and ω− is the magnetron angular frequency. n+, nz,
nd n− denote the corresponding quantum numbers. The total energy is given
y the sum of the energies of the three independent harmonic oscillators. The
ontribution of the inverted magnetron oscillator is negative. Zero point energies
f the oscillators have been subtracted.
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Fig. 2. Radial segmentation of the ring electrode (top view) for the application
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f radiofrequency fields. A predominantly quadrupolar field can be generated by
pplying a radiofrequency between pairs of opposing electrodes of the four-fold
egmented ring electrode.

Real Penning traps generally possess some anharmonic per-
urbations that introduce non-linear terms into the equations of

otion and couple the three motional modes, thus preventing us
rom finding analytical solutions for the ion motion. This prob-
em can be minimized by avoiding large distances of the ion from
he trap center. The theoretical discussion assumes also that all
nharmonic perturbations and couplings to the axial oscillator
ode can be neglected. Therefore, the description concentrates

xclusively on the cyclotron and magnetron motional modes.

.1.2. The ideal Penning trap with azimuthal quadrupole
xcitation

The application of a radiofrequency potential to the four-fold
egmented ring electrode (see Fig. 2) adds to the Hamiltonian
3) new terms that are periodic with the driving frequency νd =
d/2π and have a phase χd. The leading term in a multipolar
xpansion is the quadrupole contribution ∝ (x2 − y2) cos(ωdt +
d), higher multipoles must be minimized as they introduce
on-linearities into the equations of motion. In the quantized
ersion of the theory x and y are components of the position
perator of the ion and can be expressed in terms of the cre-
tion and annihilation operators of the modified cyclotron and
agnetron motional modes. It then becomes apparent that the

uadrupole contribution actually describes three physical pro-
esses: most importantly the absorption of an electromagnetic
eld quantum h̄ωd with simultaneous conversion of a magnetron
scillator quantum h̄ω− into a quantum of the cyclotron oscil-
ator h̄ω+, together with the reverse transition. This process is
ominant if the driving frequency νd approximately satisfies the
esonance condition h̄ωd ≈ h̄ω+ + h̄ω− = h̄ωc. It is described
y an additional term in the Hamiltonian

1(t) = h̄g(e−i(ωdt+χd)a
†
+(t)a−(t) + e+i(ωdt+χd)a

†
−(t)a+(t)).

(4)

he real coupling constant g has the physical dimension of a fre-

uency. It is proportional to the amplitude of the rf-quadrupole
eld, but its value is also influenced by details of the trap geome-

ry. As shown later, it determines the conversion time τc = π/2g,
hich is defined as the time required for the full conversion of

I
i
t
|
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state of pure magnetron motion into a state of pure cyclotron
otion by a quadrupole field at the resonance frequency ωc (see
nal results in Eq. (9)). For each magnetron quantum h̄ω− that

s annihilated (created) a cyclotron quantum h̄ω+ is simultane-
usly created (annihilated). The interaction obviously conserves
he total number of quanta Ntot = N+ + N− present in the sys-
em and has no simple description in a purely classical picture.
he other two physical processes described by the quadrupole
ontribution are the absorption (emission) of a field quantum
ωd with simultaneous creation (annihilation) of two quanta of
he modified cyclotron oscillator (driving frequency ωd ≈ 2ω+),
nd the absorption (emission) of a field quantum h̄ωd with simul-
aneous annihilation (creation) of two quanta of the magnetron
scillator (driving frequency ωd ≈ 2ω−) [12]. These two pro-
esses are negligible if ωd ≈ ωc.

The ideal Penning trap with quadrupole excitation is now
escribed by the total Hamiltonian H(t) = H0 + H1(t). The
esulting Heisenberg equations of motion for the operators a+(t)
nd a−(t) are linear and time-dependent, they permit a general,
xact solution. The equations and their solutions correspond
losely to those familiar from the study of magnetic-resonance or
he quantum theory of two-level systems. An important result is
hat the interconversion of the magnetron and cyclotron motional

odes by a quadrupole field of frequency νd is periodic with the
Rabi frequency’ νR = ωR/(2π) =

√
(g/π)2 + (νd − νc)2.

.1.3. Ion trajectories
While the viewpoint of quantum mechanics was very helpful

or the identification of the relevant interaction, it is in general
ufficient for the application to mass spectrometry to consider
he ion motion as a classical motion, i.e., following trajectories
f macroscopic scale. To work out this aspect expectation val-
es of the quantum mechanical operators are taken with respect
o quasiclassical coherent oscillator states. Thus, the annihi-
ation operators a+(t) and a−(t), obtained as solutions of the
eisenberg equations of motion, are translated into two com-
lex functions α+(t) and α−(t) that are denoted as the ‘complex
scillator amplitudes’ of the cyclotron and magnetron oscilla-
ors at time t. The complex conjugate functions α∗+(t) and α∗−(t)
orrespond to the respective creation operators. The explicite
olution of the initial value problem is [11]:

+(t) = e−i(ω++δ/2)t
[(

cos
ωRt

2
+ i

δ

ωR
sin

ωRt

2

)
α+(0)

− i
2g

ωR
sin

ωRt

2
e−iχdα−(0)

]
, (5)

−(t) = e+i(ω−+δ/2)t
[
−i

2g

ωR
sin

ωRt

2
e+iχdα+(0)

+
(

cos
ωRt

2
− i

δ

ωR
sin

ωRt

2

)
α−(0)

]
. (6)
n these equations δ = ωd − ωc is the detuning of the driv-
ng quadrupole field, ωR =

√
4g2 + δ2 the Rabi frequency, χd

he phase of the quadrupole field at time t = 0, and α±(0) =
α±(0)| exp[∓iχ±] the initial values of the complex oscillator
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plete conversion of a pure magnetron state into a state of pure
cyclotron motion is achieved for excitation pulses of the dura-
ig. 3. Conversion of pure magnetron motion to pure cyclotron motion by the a
arts (a) and (b) show the first and second half of the conversion, respectively. T

mplitudes. For example, for an initial state of pure mag-
etron motion or pure cyclotron motion they are α+(0) = 0 or
−(0) = 0, respectively.

The practical importance of the complex oscillator ampli-
udes for our applications lies in their relation to the
nstantaneous radii for the cyclotron and the magnetron motion,

+(t) =
√

2h̄

mω1
|α+(t)|, R−(t) =

√
2h̄

mω1
|α−(t)|. (7)

elating the complex oscillator amplitudes to the original
artesian coordinates and velocities, an explicite parametric rep-

esentation of the ion trajectories in the xy-plane can be derived

(t) + iy(t) = e−(i/2)δt

√
2h̄

mω1
·
[(

cos
ωRt

2
+ i

δ

ωR
sin

ωRt

2

)
· (

− ie−iχd · 2g

ωR
sin

ωRt

2
(e−iω+tα−(0) − e−iω−tα∗

+(

graphical representation of an ion trajectory calculated by this
pproach is shown in Fig. 3. For a three-dimensional represen-
ation one has to add, of course, the oscillatory axial motion.

.2. Excitation schemes

The precision in the determination of the cyclotron fre-
uency strongly depends on the width of the central peak of the
esonance. The narrower the resonance, i.e., the smaller the full-
idth-at-half-maximum (FWHM), the more precisely the center
f the resonance can be determined. The pronounced central
eak, which is clearly distinguishable from the usually smaller
ide bands, marks the point of the maximal conversion and thus
f the maximal radial energy and the shortest time of flight from
he trap to the detector. Ramsey’s method of time-separated
scillatory fields promises to lead to narrower central peaks

ompared to the conventional excitation scheme. Therefore, a
ariety of different Ramsey excitation schemes were investi-
ated with the aim of finding the one best suited for precision
ass spectrometry.

t
t

(

of an azimuthal quadrupolar field with the cyclotron frequency νc = ν+ + ν−.
lid circle in (a) indicates the initially pure magnetron motion.

+tα+(0) + e−iω−tα∗
−(0))

. (8)

In [11] the line shapes are discussed in the quantum
echanical formalism as probability distributions for the partial

onversion of a given initial state into a state of cyclotron motion.
his general framework permits to take into account different
ssumptions on the initial state as well as statistical hypotheses,
or example, on phases. A more elementary approach con-
ists in calculating the time development of the radius of the
yclotron motion R+(t) from the given initial conditions, using
qs. (5)–(7).

.2.1. The one-pulse excitation scheme
In the conventional one-pulse excitation scheme the external

riving field is applied for a certain time interval τ = τtot with

onstant amplitude, as shown in Fig. 4. The lineshape represents
he probability for the conversion of an initially pure state of

agnetron motion into cyclotron motion as a function of the
etuning δ of the quadrupole field. For given values of τ and g
t is obtained in the general formalism of [11] as

1(δ; τ, g) = 4g2

ω2
R

sin2
(ωR τ

2

)
. (9)

ote that the maximum value 1 is reached when the driving
eld is at resonance, νd = νc, and the duration of the excita-

ion is chosen to satisfy the condition gτ = (2n + 1)π/2 with
= 0, 1, 2, . . .. In different words, at resonance (δ = 0) com-
ion of the ‘conversion time’ τc = π/(2g) or odd multiples
hereof.

This result can be verified by application of Eqs. (5) and
7) with the initial condition α+(0) = 0 and arbitrary α−(0),
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Fig. 4. Excitation schemes: (a) standard excitation, (b) excitation with two
100 ms Ramsey pulses, (c) excitation with three 60 ms Ramsey pulses, and
(d) excitation with four 40 ms Ramsey pulses. Here is τ = 2 · τ1 + τ0. In the
following, τ1 is the duration of one excitation period and τ0 is the duration of
one waiting period. The excitation amplitude is chosen in a way that at ν one
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a total cycle time τtot = 300 ms and τ1 = τc/n for all excita-
tion schemes. Note that with the n-pulse excitation scheme a
c

ull conversion from pure magnetron to pure cyclotron motion is obtained. Thus,
he sum of the grey colored areas is identical in all four schemes.

nd computing the time development of the radius of modified
yclotron motion:

2
+(τ) = 4g2

ω2
R

sin2
(ωR τ

2

)
· R2

−(0) = F1(δ; τ, g) · R2
−(0).

(10)

ith respect to time the shape of the excitation pulse is rectan-
ular. Thus, in frequency space it is expected that the excitation
esembles the intensity (i.e., the modulus squared) of the Fourier
ransform of a rectangular profile, namely (4g2/δ2) sin2(δτ/2).
he actual lineshape, however, differs in two important respects

rom this Fourier transform: (a) at resonance (δ = 0) it is
periodic function of τ, describing the periodic conversion

nd reconversion of the magnetron and modified cyclotron
odes, F1(δ = 0; τ, g) = sin2(πτ/τc), whereas the intensity of

he Fourier transform increases proportionally to τ2. (b) The
entral peak is actually narrower than for the Fourier transform
f a rectangle. This can be deduced from the position δ0 of
he zero that separates the central peak from the first satellite
eak, (δ0τc)2 = 3π2 as compared to (δ0τ)2 = 4π2 for the Fourier
ransform of the rectangle, assuming τ = τc.

.2.2. The two-pulse excitation scheme and more general
chemes

Although it is not obvious on first sight, a close formal anal-
gy exists between nuclear magnetic resonance on the one hand
nd the interconversion of the magnetron and cyclotron motional
odes of an ion in a Penning trap due to quadrupole excitation

n the other hand. This was shown in [11] using the concept of
Bloch vector. It is therefore reasonable to expect that the use

f Ramsey’s method of separated oscillatory fields will lead to
ncreased precision in mass spectrometry too.

A symmetric n-pulse Ramsey cycle of a total duration τtot
onsists of n excitation intervals of duration τ1 with (n − 1)

s
fi
p
t

ass Spectrometry 264 (2007) 110–121

aiting intervals of duration τ0 in between, so that the total
ycle time is τtot = nτ1 + (n − 1)τ0. Note that the n excitation
ulses of the rf-quadrupole field must be coherent in phase.

Assuming that the ion is initially in a state of pure magnetron
otion, the probability for the conversion of magnetron quanta

nto quanta of the cyclotron motion by a two-pulse Ramsey cycle
ith detuning δ = ωd − ωc has been calculated to be

2(δ; τ0, τ1, g) = 4g2

ω2
R

{
cos

(
δτ0

2

)
sin(ωRτ1)

+ δ

ωR
sin

(
δτ0

2

)
[cos(ωRτ1) − 1]

}2

. (11)

his result and analogous ones for Ramsey excitation cycles
ith 3–5 pulses can be found in [11]. If the frequency of

he quadrupole field equals the cyclotron frequency νc and
he amplitude of the field is chosen such that the n excita-
ion intervals exactly add up to the conversion time τc, i.e., if
he coupling constant g satisfies the relation nτ1 = τc = π/2g,
hen the profile function (11) reaches the value 1 at resonance,
2(δ = 0; τ0, τc/2, g) = 1.

An elementary derivation of the two-pulse profile function
2 in Eq. (11) is possible by applying Eqs. (5)–(7) three times
uccessively to the time intervals 0 ≤ t ≤ τ1, τ1 ≤ t ≤ τ1 + τ0,
nd τ1 + τ0 ≤ t ≤ 2τ1 + τ0 = τtot, with the initial condition
+(0) = 0 and arbitrary α−(0), in order to compute the endpoint
f the time development of the radius of the cyclotron motion,
+(τtot). The first calculation yields the initial values α±(τ1) for

he waiting period, the second calculation with g = 0 yields the
hase change during the waiting period and thus the initial val-
es α±(τ1 + τ0) for the second excitation period, the third step
nally results in α±(2τ1 + τ0) = α±(τtot) and thus in a result for

he final radius of the cyclotron motion R+(τtot). Note that χd in
qs. (5) and (6) has to be replaced in the second and third step
y the corresponding phases of the quadrupole field, ωdτ1 + χd
nd ωd(τ0 + τ1) + χd, respectively. The final result is

2
+(τtot) = F2(δ; τ0, τ1, g) · R2

−(0). (12)

he time development of the ion orbit during the two excitation
eriods is shown in Fig. 3(a and b), during the waiting time the
on follows a rosette shaped orbit.

Plotting the profile function (11) with a fixed value of the wait-
ng time τ0 as a function of the detuning δ one obtains the spectral
ineshape of the two-pulse Ramsey cycle. It bears a resemblance
o the Fourier transform of a signal consisting of two rectangular
ulses, but as for a single pulse there are important and character-
stic differences. Lineshapes for higher order Ramsey cycles are
alculated in an analogous fashion using the results of [11]. In
ig. 5, generic results are displayed for n = 1, 2, 3, 4, assuming
pectral distribution is obtained in which the valley between the
rst major sideband and the central peak contains (n − 2) small
eaks, while the distance between the first major sideband and
he central peak increases with n.
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Fig. 5. Percentage of converted quanta in the case of a quadrupolar excitation near ωc as a function of the frequency detuning δ′ = δ/2π for different excitation
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bility to remove unwanted contaminations via a mass-selective
dipolar excitation at the corresponding modified cyclotron fre-
quency. Thereby the ions’ cyclotron radius is increased until

Fig. 6. Schematic drawing of the mass spectrometer ISOLTRAP including the
chemes shown in Fig. 4. The total cycle time of all schemes is 300 ms. The li
epresents the line profile of a two-pulse excitation, each of 100 ms duration. Th

c) is 60 ms. In (d) the four 45 ms pulses are interrupted by 40 ms waiting period

. Implementation at the mass spectrometer
SOLTRAP

.1. Experimental setup

The triple-trap mass spectrometer ISOLTRAP [13,14]
nstalled at the online facility ISOLDE/CERN [15,16] is ded-
cated to high-precision mass measurements of radioactive
uclides. It reaches a relative mass uncertainty of below 10−8

17]. A Paul trap and two Penning traps are the main parts of
he apparatus as shown in Fig. 6. The ions from the continu-
us 60-keV radioactive beam of ISOLDE or from the stable
lkali ion source are captured in-flight by a gas-filled linear
aul trap with segmented rods [18]. Here, the ions are accu-
ulated, cooled, and bunched. From the Paul trap the ions are

uided, after passing two pulsed drift tubes in order to reduce
he potential energy from 60 keV to about 100 eV, to a buffer-
as filled cylindrical Penning trap [19]. This preparation trap
s located in a superconducting magnet of 4.7-T field strength.
ere, the ions are mass-selectively cooled [20] with a resolv-

ng power of up to 105. Thus, an isobarically clean ion cloud
s obtained, which is transferred to the precision Penning trap.
his hyperbolic Penning trap [14], which is placed in a sec-
nd superconducting magnet of 5.9-T field strength with a field
omogeneity of 10−7 to 10−8 within 1 cm3 and a temporal stabil-
ty of (�B/B)(1/�t) ≈ 2 × 10−9 h1, provides the possibility to
esolve even low-lying excited nuclear states [21,22] and serves
or the actual mass measurement of nuclides with half-lives even

elow 100 ms [23,24].

In order to manipulate the ion motion in the precision trap
y the application of external rf-fields, the ring electrode of the
rap is four-fold segmented, as illustrated in Fig. 2. First, the

R
i
o
r
(

file of a one-pulse excitation with 300 ms excitation time is shown in (a). (b)
itation time as well as the waiting time of the three-pulses excitation scheme in
center frequency (δ = 0) is the cyclotron frequency ωc for a given ion mass m.

agnetron radius of all ions is increased via a dipolar excitation
t the magnetron frequency [25]. If required, there is the possi-
FQ trap, the preparation and precision Penning traps, as well as the reference
on source. In the inset a resonance for 39Ca19F+ ions with an excitation period
f 900 ms is shown. To monitor the ion transfer and to record the time-of-flight
esonance for the determination of the cyclotron frequency, micro-channel-plate
MCP) detectors or a channeltron are used.
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Fig. 7. Reduction of the width of the central peak by use of the Ramsey method
for constant cycle time τtot. For symmetrical n-pulse excitation a Ramsey cycle
is composed of n excitation pulses of duration τ1 = τc/n, where τc is the con-
version time, separated by (n − 1) waiting periods of duration τ0. Thus, the total
cycle time is τtot = τc + (n − 1)τ0. The variable y(n) is the ratio of the theo-
retically predicted FWHM of the central peak for n-pulse excitation relative to
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he ions hit the electrode and are lost. A quadrupolar excita-
ion at νc converts the magnetron motion into cyclotron motion.
inally, the ions are ejected out of the trap and pass the gradient
f the magnetic field, which interacts with the orbital magnetic
oment of the ions and accelerates them in the axial direction to

he detector. This acceleration is proportional to the strength of
he ions’ magnetic moment, i.e., to the radial energy obtained by
he excitation. The time of flight after ejection from the trap to
he detector is measured. This procedure is repeated for different
requencies of the quadrupolar excitation in the precision trap
round the expected value of the cyclotron frequency. By the
etermination of the mean time of flight for the different exci-
ation frequencies a time-of-flight resonance curve is recorded
see inset of Fig. 6). For appropriate excitation parameters the
inimum time of flight is measured at the cyclotron frequency

26]. For reference measurements, i.e., to calibrate the magnetic
eld, ions with well-known mass from a stable alkali ion source
re used.

The experimental standard deviation σ(νc) of the cyclotron
requency νc is a function of the resolving power of the precision
rap, i.e., the quadrupolar excitation timeTq, and the total number

tot of recorded ions. The resolving power is Fourier limited
y the duration of the quadrupolar excitation, which itself is
imited by the half-life of the ion of interest in case of short-
ived radionuclides. An empirical formula [27] describes this
elation:

σ(νc)

νc
= 1

νc

c√
Ntot · Tq

, (13)

here c is a dimensionless constant. In a large number of mea-
urements with carbon clusters the constant c was determined
or the ISOLTRAP mass spectrometer to be c = 0.898(8) [17].

.2. Reduction of the line-width

Having discussed the standard quadrupolar excitation, what
s the advantage of Ramsey’s method of time-separated oscil-
atory fields? In many experimental situations, the total time
vailable for a complete measurement cycle has an upper limit,
or example, due to the lifetime of the radioactive species under
nvestigation. Thus, a precision gain simply by increasing the
aiting time τ0 may not be feasible due to experimental lim-

tations. Therefore, different excitation schemes are compared
ith respect to the predicted width of the central peak, assuming

hat a total time τtot is available to perform one complete Ramsey
easuring cycle. For a symmetric n-pulse excitation the cycle

ime is τtot = nτ1 + (n − 1)τ0, where τ1 denotes the duration
f an excitation interval and τ0 the duration of a waiting inter-
al. For an excitation at the resonance frequency and with pulse
uration τ1 = τc/n a complete conversion of a pure magnetron
tate into a pure state of cyclotron motion occurs, i.e., the high-
st possible degree of conversion, and the central peak reaches

ts maximum possible value 1. A frequently used parameter to
escribe the shape of the central peak is its full width at half
aximum. Let δ′(n)

1/2 be the frequency detuning for which the cen-

ral peak has decreased to 0.5. Then the ratio y(n) = δ
′(n)
1/2/δ

′(1)
1/2

o
m

raction of the total cycle time spent during waiting periods. For comparison
ith experimental data the time-of-flight correction discussed below has to be

olded in.

epresents a convenient measure by which we can judge the
idth reduction obtained by n-pulse excitation as compared

o one-pulse excitation. The FWHM for one-pulse excitation
redicted by the theory is obtained from Eq. (9), numerical
alculation yields 2δ

′(1)
1/2 = 0.798685 · τ−1

tot . It is worth noting
hat generally all relevant theoretical formulae can be written in
erms of the dimensionless product δ · τtot. This implies that the
atios y(n) depend only on the ratios x = (n − 1) · (τ0/τtot) and
− x = n · (τ1/τtot), but not on the actual value of τtot. In Fig. 7

he ratios y(n) have been plotted for n = 2, 3, 4 as a function of
= (n − 1)τ0/τtot, i.e., the percentage of the total cycle time τtot

pent during waiting periods. From the graph it is obvious that
he two-pulse excitation scheme offers the largest width reduc-
ion relative to a one-pulse excitation. This excitation scheme
s therefore favored for the application in high-precision mass
pectrometry. In the theoretical limit x → 1 the pulse duration
1 = τc/n tends to zero, while the coupling parameter g, which
s proportional to the amplitude of the rf-field, tends to infin-
ty, such that the relation 2g · τc = π is maintained. Thus, for
he most favorable case of two-pulse excitation the line width
s reduced in the limit to 62% of the line width obtained by the
onventional excitation scheme. Due to technical reasons like
imitations of the amplitude of the rf-field the theoretical limit
annot be reached. For example, in the case of ISOLTRAP the
uration of the excitation period can only be reduced to 20 ms
n order to achieve a full conversion from the magnetron mode
o the cyclotron mode.

.3. Time-of-flight detection technique at ISOLTRAP
As described above, the frequency determination via a time-
f-flight detection technique [5] is based on the interaction of the
agnetic moment of the orbiting ion with the magnetic field gra-
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ig. 8. The magnetic field amplitude from the precision trap to the end of the
onversion section. Between the two marked points the amplitude decreases
bout 90% of its origin value.

ient (Fig. 8). Thus, for a detailed comparison with experimental
ata it is necessary to convert the theoretical line shapes for the
nergy conversion into time-of-flight spectra, which will be dis-
ussed in the following. The kinetic energy in the radial motions
s predominantly due to the cyclotron motion; the contribution
f the magnetron mode is negligible because of ω− � ω+:

r(ωd) = Ekin
r (ωd) + Epot

r (ωd)

= 1
2m · (R2+(τtot, ωd)ω2+ + R2−(τtot, ωd)ω2−)

− 1
2m · ω+ω−(R2+(τtot, ωd) + R2−(τtot, ωd))
≈ 1
2m · R2+(τtot, ωd)ω2+. (14)

ere, R±(τtot, ωd) are the radii of the two radial modes after the
uadrupolar excitation has been applied with the frequency ωd.

T
t
a
i

ig. 9. Calculated time-of-flight cyclotron resonances for different excitation scheme
f flight of a one-pulse excitation with 300 ms duration is shown in (a). (b) Shows the
he three pulse excitation (c) is done by three 60-ms excitation periods and two 60-m
eriods.
ass Spectrometry 264 (2007) 110–121 117

he magnetic moment of an ion with kinetic energy Er(ωd)
n a magnetic field �B = B · �ez can be written as �μ(ωd) =
Er(ωd)/B]�ez. The interaction with the gradient of the magnetic
eld causes an axial force �Fz(ωd) = −�μ(ωd) · ∇ �Bz on the ion,
hich leads to a reduction of the time of flight from the trap to

he detector. This time of flight can be calculated with [26]

(ωd) =
∫ z1

z0

{
m

2[E0 − q · V (z) − μ(ωd) · B(z)]

}1/2

dz, (15)

here E0 is the total initial energy of the ion, V (z) and B (z)
re the electric and magnetic fields, respectively, along the way
rom the trap to the detector. At ωd = ωc the magnetic moment
s maximal and thus the time of flight minimal. Typical the-
retical time-of-flight cyclotron-resonance curves for different
xcitation schemes using the radial energies calculated from the
quations of conversion (see Eqs. (9) and (11) and Ref. [11]) are
hown in Fig. 9. In each graph the time of flight of the ions from
he trap to the detector is plotted as a function of the frequency
etuning δ′ = δ/2π with respect to the cyclotron frequency νc.

. Results

To confirm the calculations, i.e., to determine the line-width
eduction and, most importantly, to specify the precision gain
ue to the Ramsey excitation method, more than 300 time-of-
ight resonance curves with different excitation schemes were
ecorded with the Penning trap mass spectrometer ISOLTRAP.

he ion species for all measurements was 39K+ provided by

he stable alkali off-line ion source. Each resonance consists of
bout 2500 ions in order to have identical statistics. To min-
mize ion–ion interactions only time of flight measurements

s. The total excitation and waiting time in the precision trap is 300 ms. The time
time of flight of a two-pulse excitation, each of the pulses being 100 ms long.

s waiting periods. In (d) the four 45-ms pulses are interrupted by 40-ms waiting
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Fig. 10. The measured mean time of flight as a function of the quadrupolar excitation frequency with predicted curves fitted to the data. Here 39K+ ions from the
s e excitation scheme with 300 ms excitation time, (b) a two-pulse excitation scheme
w h 60 ms, interrupted by two waiting periods of 60 ms, (d) four 45 ms excitation pulses
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Fig. 11. The full-width-at-half-maximum (FWHM) values of the time-of-flight
cyclotron resonances as a function of the waiting time for the two-pulse excita-
tion scheme is given. The total cycle times are τtot = 300 ms (squares), 600 ms
(circles), and 900 ms (triangles). The bold solid lines are the theoretically cal-
culated values. Since the determination of the FWHM was performed manually
from the fit curves, the error bars are conservatively estimated to be ±0.05 Hz.

Table 1
The maximum and minimum experimental FWHM of the different excitation
schemes for different cycle times are given

Number of
pulses

Cycle
time τtot

Max. FWHM
(Hz)

Min. FWHM
(Hz)

Reduction
gain (%)

2 300 4.1 (0.1) 2.6 (0.1) 36.6 (1.7)
2 600 2.1 (0.1) 1.3 (0.1) 38.1 (3.4)
table alkali ion source were used. (a) Resonance of the conventional one-puls
ith two times 100 ms excitation and 100 ms waiting time. (c) Three pulses, eac

nd three waiting periods of 40 ms.

ith at most five ions in the trap were taken into account. The
fforts were concentrated on the specification of the uncertainty
n the frequency determination for different excitation schemes.
ig. 10 shows time-of-flight cyclotron resonances for the one-,

wo-, three-, and four-pulse excitation scheme. A fit of the theo-
etically expected line shape (solid line) to the data points allows
he determination of the FWHM and the cyclotron frequency νc
long with its uncertainty δνc. To perform these fits the standard
valuation program of ISOLTRAP [17] was extended in order
o analyze the measured cyclotron resonances using the Ramsey

ethod.
The fit results concerning the FWHM are presented in

igs. 11 and 12. Fig. 11 shows results obtained with a two-pulse
xcitation scheme of different overall cycle times (τtot = 300,
00, 900 ms). The FWHM is given as a function of the waiting
eriod. Due to field inhomogeneities and ion–ion interactions
he data points are shifted slightly to higher FWHM values com-
ared to theory. Similar results are shown in Fig. 12 for different
umbers of excitation pulses, where the total cycle time in the
recision trap is constant τtot = 300 ms. The experimental val-
es are on average 0.1 Hz higher than the theoretical ones. This
ine-broadening effect is due to the electric and magnetic field
mperfections and ion–ion interactions, which were not taken
nto account in the calculations described above. A significant
eduction of the FWHM for shorter excitation pulses with longer
aiting periods in between can be observed.
In Table 1 the experimental results are summarized. “cycle

ime” is the duration of the total cycle. The maximum FWHM
s the one of the standard one-pulse resonance curve. The min-

mum FWHM is measured using the longest possible waiting
ime, i.e., shortest possible excitation time, which is determined
y the maximal possible amplitude of the quadrupolar excitation
eld required to obtain one full conversion from pure mag-

2 900 1.4 (0.1) 0.9 (0.1) 35.7 (4.7)
3 300 4.1 (0.1) 3.0 (0.1) 26.8 (1.1)
4 300 4.1 (0.1) 3.3 (0.1) 19.5 (0.8)

In addition the reduction gain is calculated. For further explanation see text.
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Fig. 12. The full-width-half-maximum values of the time-of-flight cyclotron
resonances as a function of the sum of all waiting periods τ0 =

∑
i
τi
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Fig. 13. In (a) the uncertainty of the measured cyclotron frequency is given
as a function of the waiting time for the two-pulse, three-pulse, and four-pulse
excitation scheme. In (b) the uncertainty of the measured cyclotron frequency is
g
u

p

t
u
i
tion in the cyclotron frequency uncertainty can be achieved is
the two-pulse Ramsey scheme. Comparing the two-pulse exci-
tation scheme with 300, 600, and 900 ms total cycle time, the

Table 2
The maximum and the minimum experimental uncertainties of different excita-
tion schemes and excitation times are listed

Number of
pulses

Cycle
time τtot

Max. uncertainty
(Hz)

Min. uncertainty
(Hz)

Improvement
factor

2 300 0.027 0.008 3.4
2 600 0.017 0.006 2.8
2 900 0.010 0.004 2.5
3 300 0.027 0.013 2.1
hree and four excitation pulses. The total cycle time is τtot = 300 ms. The solid
ines are the theoretically calculated FWHM values.

etron to pure cyclotron motion. The last column of Table 1
ives the maximum line-width reduction (reduction gain =
max. FWHM− min. FWHM)/max. FWHM) using the differ-
nt Ramsey excitation schemes. A remarkable reduction of close
o 40% of the normal line-width is observed, similar to the
esults in the original work of Ramsey [8]. The reduction in
ine-width is especially important in context with the achiev-
ble resolving power R = m/�m = ν/�ν. As theoretically
redicted, the largest possible reduction is obtained by a two-
ulse excitation scheme. However, the relative gain in reduction
epends only weakly on the total cycle time τtot (see Table 1
nd Fig. 11).

In Fig. 13 the experimental uncertainty δνc of the measured
yclotron frequencies for different numbers of pulses and dif-
erent length of the total cycle time is plotted versus the waiting
ime τ0. Each data point represents the mean value of three to ten
ndividual measurements. The uncertainty δνc decreases with
ncreasing waiting time. This is expected due to the decreas-
ng FWHM at longer waiting times. If the cyclotron frequency
ncertainty would only depend on the FWHM, a similar behavior
s observed in Fig. 12 would be expected. However, as men-
ioned before, it is obvious that there is also an effect of the
verall line shape, especially of the steepness of the curve and
he pronounced sidebands, on the uncertainty in the frequency
etermination of νc.

The excitation scheme used for the data points given in
ig. 13(a) consists of two, three, and four pulses, where the

otal excitation cycle is fixed to 300 ms. The uncertainty is
bviously decreasing for shorter excitation pulses, i.e., longer
aiting times τ0. In case of the two-pulse excitation it can be

educed by more than a factor of three (from δνc ≈ 27 mHz
own to δνc ≈ 8 mHz) as compared to the conventional proce-
ure just by changing the excitation scheme to the two-pulse

ethod. The uncertainty using the three- and four-pulse exci-

ation scheme decreases to δνc ≈ 13 mHz and δνc ≈ 15 mHz,
espectively. T
iven for the two-pulse scheme with a total cycle of 300, 600, and 900 ms, where
= (n − 1)τ0/τtot is the fraction of the total cycle time spent during waiting

eriods.

The result is summarized in Table 2, where the maximal and
he minimal uncertainty for all investigated excitation schemes
nder identical experimental conditions are listed. As for the
nvestigation of the FWHM, the scheme where the largest reduc-
4 300 0.027 0.015 1.8

he improvement factor is given in the last column.
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endency is similar to the results obtained for the FWHM of the
esonances (see Fig. 13(b)). The slightly decreasing gain fac-
or for two-pulse schemes with longer total cycle times must
e assigned to the relative decrease of the statistical uncertainty
n comparison to the constant systematic uncertainty. Asym-

etric excitation schemes where the individual Ramsey pulses
ave different lengths have also been investigated. However,
he symmetric two-pulse excitation scheme remains the best
ne in respect to line-width reduction and uncertainty gain (see
able 2).

. First online mass spectrometry application of the
amsey method

The first online mass measurement by the Ramsey excitation
ethod was carried out for the short-lived nuclides 38Ca [28]

nd 39Ca, which have half-lives of only T1/2(38Ca) = 440 ms
nd T1/2(39Ca) = 860 ms, respectively [29]. In order to suppress
8K+contaminations, the 38Ca+ ions were delivered in form of
he molecular sideband 38Ca19F+. In the inset of Fig. 6(a) res-
nance curve of 39Ca19F+ is shown for which the ions were
xposed to a continous quadrupolar radiofrequency excitation
f 1.2 s duration. The cyclotron frequency of this resonance has
een determined with an uncertainty of δνc = 21 mHz. Fig. 14
hows a resonance of the same species with the same number of
ollected ions (≈ 2500), where a two-pulse Ramsey excitation
cheme was used. The two excitation pulses had a duration of
00 ms interrupted by a waiting period of 1 s. Thus, the total
ime τtot = 1.2 s for which the ions remained in the trap was
dentical. Here, the cyclotron frequency was determined with
n uncertainty of only δνc = 6 mHz. In comparison, the statis-
ical error in the frequency determination could be reduced by

ore than a factor of three, keeping the number of ions and the
ime of the excitation cycle constant. This is a tremendous gain

actor, especially for mass measurements on short-lived radionu-
lides since the required measurement time to reach a certain
tatistical uncertainty can be reduced by almost an order of
agnitude.

ig. 14. Time of flight for 39Ca19F+. A two-pulse Ramsey scheme was chosen
ith two 100 ms duration excitation periods interrupted by a 1 s waiting period.
he solid curve is a fit of the theoretically expected line shape to the data.
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. Conclusions and outlook

The experimental studies described in this paper demonstrate
hat Ramsey’s method of time-separated oscillatory fields can be
pplied to excite the ion motion in a Penning trap. The Ramsey
echnique improves significantly the statistical uncertainty in
igh-precision mass spectrometry on short-lived radionuclides.
e performed systematic experimental investigations for differ-

nt excitation patterns with two, three, and four excitation pulses.
e observed the expected reduction of the line width of almost
factor of two along with a gain in precision in the frequency
etermination. This leads to an important gain in precision of the
requency determination. The new findings were demonstrated
or a stable nuclide as well as for a short-lived radionuclide in
n online measurement.

An optimized Ramsey excitation scheme with two pulses of
hort duration interrupted by a long waiting period results in
n improvement of the statistical uncertainty in the cyclotron-
requency determination by more than a factor of three compared
o the conventional scheme, without any further experimental
hanges as, e.g., the number of detected ions for a resonance
r reduction of scan detuning width. Since the Ramsey method
pens a door to higher precision in Penning trap mass spectrom-
try, the application in other Penning trap setups is already in
reparation and under investigation, as, e.g., at SMILETRAP
Stockholm) using highly charged stable ions [10] or at SHIP-
RAP (GSI, Darmstadt) using short-lived fission fragments

30]. It can be expected that the Ramsey method will find a
ide-spread application in high-precision mass spectrometry of

tomic nuclei.
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