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Abstract

The highest precision in direct mass measurements is obtained with Penning trap mass spectrometry. Most experiments use the interconversion
of the magnetron and cyclotron motional modes of the stored ion due to excitation by external radiofrequency-quadrupole fields. In this work a new
excitation scheme, Ramsey’s method of time-separated oscillatory fields, has been successfully tested. It has been shown to reduce significantly
the uncertainty in the determination of the cyclotron frequency and thus of the ion mass of interest. The theoretical description of the ion motion
excited with Ramsey’s method in a Penning trap and subsequently the calculation of the resonance line shapes for different excitation times,
pulse structures, and detunings of the quadrupole field has been carried out in a quantum mechanical framework and is discussed in detail in the
preceding article in this journal by M. Kretzschmar. Here, the new excitation technique has been applied with the ISOLTRAP mass spectrometer at
ISOLDE/CERN for mass measurements on stable as well as short-lived nuclides. The experimental resonances are in agreement with the theoretical

predictions and a precision gain more than a factor of three was achieved compared to the use of the conventional excitation technique.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The mass and its inherent connection with the atomic and
nuclear binding energy is an important property of a nuclide.
Thus, precise mass measurements are eminent for various appli-
cations in many fields of physics [1,2]. The required precision of
the atomic mass depends on the physics being investigated. For
radionuclides, which often have half-lives considerably less than
a second, it ranges from 3m/m = 107> to below 10~8 and for
stable nuclides even down to 8m/m = 10~'!. Since the inter-
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est in masses of short-lived and stable nuclides arises from a
wide range of applications with different requirements on the
accuracy, a continuous development of, e.g., new ion detec-
tion and preparation techniques is carried on at several facilities
world-wide [3].

In a Penning trap an ion with a charge-to-mass ratio g/m is
stored in a strong homogeneous magnetic field By combined
with a weak electrostatic quadrupole field [4]. The mass mea-
surement is performed via the determination of the cyclotron
frequency v, = gBo/(2tm). To this end, the ion motion is, after
a series of preparatory steps, probed by a pulse of quadrupo-
lar rf-radiation. The effect on the ion motion depends on the
frequency, duration, amplitude and time-structure of the pulse
and is detected by a time-of-flight cyclotron-resonance tech-
nique [5]. A resonance is obtained by a series of time-of-flight
measurements at different excitation frequencies near v.. The
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precision of the resulting value for v, is determined besides the
number of detected ions by the width and shape of the resonance
curve. In the following, the implementation of Ramsey’s method
of time-separated oscillatory fields in high-precision mass spec-
trometry with Penning traps is described and the effect on the
linewidth and precision in the determination of the resonance
center is discussed.

In 1949, N.F. Ramsey improved the molecular-beam
magnetic-resonance method of Rabi et al. [6,7] by applying
oscillatory fields to the transversing molecular beam in spatially
separated regions [8]. This replacement of the uniformly applied
field led to a linewidth reduction to 60% and thus to a more pre-
cise determination of the resonance frequency. For a detailed
description see [8] and references therein.

In high-precision mass spectrometry the idea to use time-
separated oscillatory fields to manipulate the radial motions
of confined ions in a Penning trap was first put forward at
ISOLTRAP by Bollen et al. in 1992 [9] and later tested at the
SMILETRAP experiment [10]. At this time the correct theoret-
ical description of the observed line shapes was not available.
Instead, the observations were discussed qualitatively in terms
of the Fourier transform of the applied pulse sequence. However,
a study of the precision gain as well as online mass measure-
ments with the new excitation scheme were not performed.
In the preceding paper [11], a theoretical description of the
obtained lineshape has been developed in a quantum mechanical
framework. In the following, the corresponding experimental
investigations and the gain in linewidth and precision of the
“Ramsey method” will be presented.

2. Theoretical overview

For a quick orientation we review here in a non-technical
manner the physical assumptions forming the basis of the the-
oretical model, the approximations necessary for analytical
calculations, and the results that are most important for mass
spectrometry. Details are found in the preceding article [11].

2.1. Penning traps with azimuthal quadrupole excitation

2.1.1. The ideal Penning trap

The electromagnetic field configuration of an ideal Penning
trap consists of a strong homogeneous magnetic field Bo = Bye,
in the axial direction and an electrostatic quadrupole field E =
—V @ derived from the potential @y(x, y, z) = (U)/ (2z% +
r3) - (222 — x* — y?). The motion of a single ion of mass m
and electric charge ¢ in this electromagnetic field is deter-
mined by the field parameters By and U, or equivalently, by the
cyclotron frequency v, = w./2m = qBo/(2wm) and by the axial

frequency v, = /27 with @, = /4qU/(2z} + r§), where rq

and zo denote the inner radius of the ring electrode and the
distance of the endcap electrodes from the trap center, respec-
tively. The dynamics of a single ion in an ideal Penning trap is
described by three uncoupled harmonic oscillators: the oscilla-
tor of the cyclotron motion with the frequency w4 = 1/2(w¢ +

\/@? — 2w?), the inverted oscillator of the magnetron motion

with the frequency w_ = 1/2(wc — /w2 — 2w?), and the axial

oscillator with the frequency w;. It is useful to introduce the
abbreviation w; = y/w? — 2w?, so that w1+ = 1/2(wc + w1).
With appropriately chosen canonical coordinates gx, px (kK =
+, —, 3) the Hamiltonian for the motion of a single spinless ion
can be written [11] as

Hy=wy 2@ +p2) —o- - Y@ + pP)+o. - 35+ pd.
(1)

Canonical coordinates offer an easy access to the quantized ver-
sion of the theory. Annihilation and creation operators for the
oscillator quanta are defined by

1

a +1 pi),

k m(Qk Pi)

P 1 :
a, = —=(r —ipr), k=+-3), 2
X m(‘]k i), ( ) 2

with commutation relations [a4, aL] =1, [a+, aL] =0, and
[a+, ax] = 0. The Hamiltonian then takes the form

Hy = ha)+(aia+ + %) - ha)_(aia_ + %) +ha)z(a;a3 + %).
(3

The quantized version of the theory provides a clear picture of the
energy level scheme associated with the ion motion in an ideal
Penning trap (see Fig. 1). Therefore, it is valuable for the iden-
tification of the interaction with the external rf-quadrupole field
that is used to convert the magnetron motion into the cyclotron
motion.
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Fig. 1. Energy level scheme of the harmonic oscillators for a spinless charged
particle in an ideal Penning trap. w is the modified cyclotron angular frequency,
w; is the angular frequency, and w_ is the magnetron angular frequency. ny, n;,
and n_ denote the corresponding quantum numbers. The total energy is given
by the sum of the energies of the three independent harmonic oscillators. The
contribution of the inverted magnetron oscillator is negative. Zero point energies
of the oscillators have been subtracted.
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Fig. 2. Radial segmentation of the ring electrode (top view) for the application
of radiofrequency fields. A predominantly quadrupolar field can be generated by
applying a radiofrequency between pairs of opposing electrodes of the four-fold
segmented ring electrode.

Real Penning traps generally possess some anharmonic per-
turbations that introduce non-linear terms into the equations of
motion and couple the three motional modes, thus preventing us
from finding analytical solutions for the ion motion. This prob-
lem can be minimized by avoiding large distances of the ion from
the trap center. The theoretical discussion assumes also that all
anharmonic perturbations and couplings to the axial oscillator
mode can be neglected. Therefore, the description concentrates
exclusively on the cyclotron and magnetron motional modes.

2.1.2. The ideal Penning trap with azimuthal quadrupole
excitation

The application of a radiofrequency potential to the four-fold
segmented ring electrode (see Fig. 2) adds to the Hamiltonian
(3) new terms that are periodic with the driving frequency vg =
wq/2m and have a phase xq. The leading term in a multipolar
expansion is the quadrupole contribution ox (x> — y?) cos(wqt +
Xd), higher multipoles must be minimized as they introduce
non-linearities into the equations of motion. In the quantized
version of the theory x and y are components of the position
operator of the ion and can be expressed in terms of the cre-
ation and annihilation operators of the modified cyclotron and
magnetron motional modes. It then becomes apparent that the
quadrupole contribution actually describes three physical pro-
cesses: most importantly the absorption of an electromagnetic
field quantum wqy with simultaneous conversion of a magnetron
oscillator quantum Aiw— into a quantum of the cyclotron oscil-
lator w4, together with the reverse transition. This process is
dominant if the driving frequency vq approximately satisfies the
resonance condition iwg ~ hw+ + hw_ = ho.. It is described
by an additional term in the Hamiltonian

H (1) = hg(e @i+ x0gl (na_ (1) + e @041 (na (1)).

“

The real coupling constant g has the physical dimension of a fre-
quency. It is proportional to the amplitude of the rf-quadrupole
field, but its value is also influenced by details of the trap geome-
try. As shown later, it determines the conversion time t. = 7/2g,
which is defined as the time required for the full conversion of

a state of pure magnetron motion into a state of pure cyclotron
motion by a quadrupole field at the resonance frequency w, (see
final results in Eq. (9)). For each magnetron quantum hw_ that
is annihilated (created) a cyclotron quantum /. is simultane-
ously created (annihilated). The interaction obviously conserves
the total number of quanta Nyos = N4 + N_ present in the sys-
tem and has no simple description in a purely classical picture.
The other two physical processes described by the quadrupole
contribution are the absorption (emission) of a field quantum
hwq with simultaneous creation (annihilation) of two quanta of
the modified cyclotron oscillator (driving frequency wg ~ 2w),
and the absorption (emission) of a field quantum fiwg with simul-
taneous annihilation (creation) of two quanta of the magnetron
oscillator (driving frequency wgq =~ 2w_) [12]. These two pro-
cesses are negligible if wg ~ w.

The ideal Penning trap with quadrupole excitation is now
described by the total Hamiltonian H(¢) = Hy + H;(t). The
resulting Heisenberg equations of motion for the operators a. (¢)
and a_(¢) are linear and time-dependent, they permit a general,
exact solution. The equations and their solutions correspond
closely to those familiar from the study of magnetic-resonance or
the quantum theory of two-level systems. An important result is
that the interconversion of the magnetron and cyclotron motional
modes by a quadrupole field of frequency vy is periodic with the

‘Rabi frequency’ vg = wr/(2m) = \/(g/yr)2 + (vg — vc)z.

2.1.3. Ion trajectories

While the viewpoint of quantum mechanics was very helpful
for the identification of the relevant interaction, it is in general
sufficient for the application to mass spectrometry to consider
the ion motion as a classical motion, i.e., following trajectories
of macroscopic scale. To work out this aspect expectation val-
ues of the quantum mechanical operators are taken with respect
to quasiclassical coherent oscillator states. Thus, the annihi-
lation operators a4 (¢) and a_(¢), obtained as solutions of the
Heisenberg equations of motion, are translated into two com-
plex functions o4 (f) and «_(¢) that are denoted as the ‘complex
oscillator amplitudes’ of the cyclotron and magnetron oscilla-
tors at time 7. The complex conjugate functions o (¢) and o (2)
correspond to the respective creation operators. The explicite
solution of the initial value problem is [11]:

; t 1) t
o (1) = e H@+H3/21 Kcos wTR +i— sin w;) a4 (0)

wR
2 t .
2 Gn & e_’Xdoc_(O)} , 5)
WR 2
a_(t) = eti@-+3/2) —iz—g sin @RY et (0)
WR 2
t 8 t
4 (cos R i % in 2R o 0] 6)
2 WR 2

In these equations § = wq — w. is the detuning of the driv-
ing quadrupole field, wr = \/4g* + 52 the Rabi frequency, x4
the phase of the quadrupole field at time ¢t = 0, and a4 (0) =
|+ (0)| exp[Fix=+] the initial values of the complex oscillator
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Fig. 3. Conversion of pure magnetron motion to pure cyclotron motion by the action of an azimuthal quadrupolar field with the cyclotron frequency v. = vy 4+ v_.
Parts (a) and (b) show the first and second half of the conversion, respectively. The solid circle in (a) indicates the initially pure magnetron motion.

amplitudes. For example, for an initial state of pure mag-
netron motion or pure cyclotron motion they are o4 (0) = 0 or
«—(0) = 0, respectively.

The practical importance of the complex oscillator ampli-
tudes for our applications lies in their relation to the
instantaneous radii for the cyclotron and the magnetron motion,

2h 2h
Ri(t) = [ —— ey (D), R_(t) = [ ——]a—(D)]. )
mwi mawi

Relating the complex oscillator amplitudes to the original
Cartesian coordinates and velocities, an explicite parametric rep-
resentation of the ion trajectories in the xy-plane can be derived

xX(1) + iy(r) = e~ /D%

In [11] the line shapes are discussed in the quantum
mechanical formalism as probability distributions for the partial
conversion of a given initial state into a state of cyclotron motion.
This general framework permits to take into account different
assumptions on the initial state as well as statistical hypotheses,
for example, on phases. A more elementary approach con-
sists in calculating the time development of the radius of the
cyclotron motion R (¢) from the given initial conditions, using
Egs. (5)-(7).

2.2.1. The one-pulse excitation scheme
In the conventional one-pulse excitation scheme the external
driving field is applied for a certain time interval T = 7y With

2nh t 1) t ; ;
. [(cos @RI 4+ i—sin wR) (e o (0) + e (0))

mawi 2 WR 2
i 2 t .
—iemia . =8 gin PR ooty (0) — e_""laj_(O))} : ®)
WR 2

A graphical representation of an ion trajectory calculated by this
approach is shown in Fig. 3. For a three-dimensional represen-
tation one has to add, of course, the oscillatory axial motion.

2.2. Excitation schemes

The precision in the determination of the cyclotron fre-
quency strongly depends on the width of the central peak of the
resonance. The narrower the resonance, i.e., the smaller the full-
width-at-half-maximum (FWHM), the more precisely the center
of the resonance can be determined. The pronounced central
peak, which is clearly distinguishable from the usually smaller
side bands, marks the point of the maximal conversion and thus
of the maximal radial energy and the shortest time of flight from
the trap to the detector. Ramsey’s method of time-separated
oscillatory fields promises to lead to narrower central peaks
compared to the conventional excitation scheme. Therefore, a
variety of different Ramsey excitation schemes were investi-
gated with the aim of finding the one best suited for precision
mass spectrometry.

constant amplitude, as shown in Fig. 4. The lineshape represents
the probability for the conversion of an initially pure state of
magnetron motion into cyclotron motion as a function of the
detuning § of the quadrupole field. For given values of 7 and g
it is obtained in the general formalism of [11] as
4 2 .2 (WRT

Fi(8;7,8) = —5 sin (T) . ©)]
WR
Note that the maximum value 1 is reached when the driving
field is at resonance, vq4 = v¢, and the duration of the excita-
tion is chosen to satisfy the condition gt = (2n 4 1)7/2 with
n=20,1,2,.... In different words, at resonance (§ = 0) com-
plete conversion of a pure magnetron state into a state of pure
cyclotron motion is achieved for excitation pulses of the dura-
tion of the ‘conversion time’ t. = m/(2g) or odd multiples
thereof.

This result can be verified by application of Egs. (5) and
(7) with the initial condition o4 (0) = 0 and arbitrary o_(0),
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Fig. 4. Excitation schemes: (a) standard excitation, (b) excitation with two
100ms Ramsey pulses, (c) excitation with three 60 ms Ramsey pulses, and
(d) excitation with four 40 ms Ramsey pulses. Here is t =2 - t; + 7. In the
following, 7 is the duration of one excitation period and 1o is the duration of
one waiting period. The excitation amplitude is chosen in a way that at v, one
full conversion from pure magnetron to pure cyclotron motion is obtained. Thus,
the sum of the grey colored areas is identical in all four schemes.

and computing the time development of the radius of modified
cyclotron motion:

4 2
R =5 sin? (255) - R20) = Fi: 7, 9) - R(0).
wR 2

(10)

With respect to time the shape of the excitation pulse is rectan-
gular. Thus, in frequency space it is expected that the excitation
resembles the intensity (i.e., the modulus squared) of the Fourier
transform of a rectangular profile, namely (4g2/8%) sinz(ér/ 2).
The actual lineshape, however, differs in two important respects
from this Fourier transform: (a) at resonance (5 = 0) it is
a periodic function of 7, describing the periodic conversion
and reconversion of the magnetron and modified cyclotron
modes, F1(§ =0;1, g) = sinz(nt/ 7¢), wWhereas the intensity of
the Fourier transform increases proportionally to 2. (b) The
central peak is actually narrower than for the Fourier transform
of a rectangle. This can be deduced from the position &9 of
the zero that separates the central peak from the first satellite
peak, ((S()rc)2 =372 as compared to ((Sor)2 = 472 for the Fourier
transform of the rectangle, assuming 7 = ..

2.2.2. The two-pulse excitation scheme and more general
schemes

Although it is not obvious on first sight, a close formal anal-
ogy exists between nuclear magnetic resonance on the one hand
and the interconversion of the magnetron and cyclotron motional
modes of an ion in a Penning trap due to quadrupole excitation
on the other hand. This was shown in [11] using the concept of
a Bloch vector. It is therefore reasonable to expect that the use
of Ramsey’s method of separated oscillatory fields will lead to
increased precision in mass spectrometry too.

A symmetric n-pulse Ramsey cycle of a total duration Ty
consists of n excitation intervals of duration 7; with (n — 1)

waiting intervals of duration tp in between, so that the total
cycle time is Ty = nt1 4 (n — 1)709. Note that the n excitation
pulses of the rf-quadrupole field must be coherent in phase.

Assuming that the ion is initially in a state of pure magnetron
motion, the probability for the conversion of magnetron quanta
into quanta of the cyclotron motion by a two-pulse Ramsey cycle
with detuning § = wg — w, has been calculated to be

4g* 510\ .
F>(8; 70, T1, 8) = —5{ cos EN sin(wr 1)

WR

5 . (é1 2
+ — sin <2) [cos(wrTy) — l]} . an

WR

This result and analogous ones for Ramsey excitation cycles
with 3-5 pulses can be found in [11]. If the frequency of
the quadrupole field equals the cyclotron frequency v. and
the amplitude of the field is chosen such that the n excita-
tion intervals exactly add up to the conversion time t, i.e., if
the coupling constant g satisfies the relation nt; = . = 7/2g,
then the profile function (11) reaches the value 1 at resonance,
F2(6 = 0570, 7c/2,8) = 1.

An elementary derivation of the two-pulse profile function
F> in Eq. (11) is possible by applying Eqgs. (5)—(7) three times
successively to the time intervals 0 <t < 11, 11 <t < 11 + 70,
and 71 + 190 <t <271 + T9o = Tiot, With the initial condition
a4 (0) = 0 and arbitrary o_(0), in order to compute the endpoint
of the time development of the radius of the cyclotron motion,
R (Tiot). The first calculation yields the initial values a (t1) for
the waiting period, the second calculation with g = 0 yields the
phase change during the waiting period and thus the initial val-
ues o4 (7] + 1) for the second excitation period, the third step
finally results in o4 (271 + 79) = @4 (7i0r) and thus in a result for
the final radius of the cyclotron motion R (Ty). Note that xq4 in
Egs. (5) and (6) has to be replaced in the second and third step
by the corresponding phases of the quadrupole field, wqt; + x4
and wq(tg + 1) + x4, respectively. The final result is

R%(tio) = F2(8; 70, 71, ) - R2(0). (12)

The time development of the ion orbit during the two excitation
periods is shown in Fig. 3(a and b), during the waiting time the
ion follows a rosette shaped orbit.

Plotting the profile function (11) with a fixed value of the wait-
ing time 1 as a function of the detuning § one obtains the spectral
lineshape of the two-pulse Ramsey cycle. It bears a resemblance
to the Fourier transform of a signal consisting of two rectangular
pulses, but as for a single pulse there are important and character-
istic differences. Lineshapes for higher order Ramsey cycles are
calculated in an analogous fashion using the results of [11]. In
Fig. 5, generic results are displayed forn = 1, 2, 3, 4, assuming
a total cycle time 1o = 300 ms and 7| = t./n for all excita-
tion schemes. Note that with the n-pulse excitation scheme a
spectral distribution is obtained in which the valley between the
first major sideband and the central peak contains (n — 2) small
peaks, while the distance between the first major sideband and
the central peak increases with .
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Fig. 5. Percentage of converted quanta in the case of a quadrupolar excitation near w, as a function of the frequency detuning §' = §/27 for different excitation
schemes shown in Fig. 4. The total cycle time of all schemes is 300 ms. The line profile of a one-pulse excitation with 300 ms excitation time is shown in (a). (b)
Represents the line profile of a two-pulse excitation, each of 100 ms duration. The excitation time as well as the waiting time of the three-pulses excitation scheme in
(c) is 60 ms. In (d) the four 45 ms pulses are interrupted by 40 ms waiting periods. The center frequency (6 = 0) is the cyclotron frequency w. for a given ion mass m.

3. Implementation at the mass spectrometer
ISOLTRAP

3.1. Experimental setup

The triple-trap mass spectrometer ISOLTRAP [13,14]
installed at the online facility ISOLDE/CERN [15,16] is ded-
icated to high-precision mass measurements of radioactive
nuclides. It reaches a relative mass uncertainty of below 103
[17]. A Paul trap and two Penning traps are the main parts of
the apparatus as shown in Fig. 6. The ions from the continu-
ous 60-keV radioactive beam of ISOLDE or from the stable
alkali ion source are captured in-flight by a gas-filled linear
Paul trap with segmented rods [18]. Here, the ions are accu-
mulated, cooled, and bunched. From the Paul trap the ions are
guided, after passing two pulsed drift tubes in order to reduce
the potential energy from 60keV to about 100 eV, to a buffer-
gas filled cylindrical Penning trap [19]. This preparation trap
is located in a superconducting magnet of 4.7-T field strength.
Here, the ions are mass-selectively cooled [20] with a resolv-
ing power of up to 103. Thus, an isobarically clean ion cloud
is obtained, which is transferred to the precision Penning trap.
This hyperbolic Penning trap [14], which is placed in a sec-
ond superconducting magnet of 5.9-T field strength with a field
homogeneity of 107 to 10~8 within 1 cm? and a temporal stabil-
ity of (8B/B)(1/8t) ~ 2 x 10~2h!, provides the possibility to
resolve even low-lying excited nuclear states [21,22] and serves
for the actual mass measurement of nuclides with half-lives even
below 100 ms [23,24].

In order to manipulate the ion motion in the precision trap
by the application of external 1f-fields, the ring electrode of the
trap is four-fold segmented, as illustrated in Fig. 2. First, the

magnetron radius of all ions is increased via a dipolar excitation
at the magnetron frequency [25]. If required, there is the possi-
bility to remove unwanted contaminations via a mass-selective
dipolar excitation at the corresponding modified cyclotron fre-
quency. Thereby the ions’ cyclotron radius is increased until

oy MCP 3 or
— == Channeltron
2 Rl
E, 300+
g precision
5 Penning =
2 2801 trap M Ll %
= h
g 260
= << | MoP2
240 ! \
2 -1 [} 1 2 3
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Fig. 6. Schematic drawing of the mass spectrometer ISOLTRAP including the
RFQ trap, the preparation and precision Penning traps, as well as the reference
ion source. In the inset a resonance for 3Ca'°F+ ions with an excitation period
of 900 ms is shown. To monitor the ion transfer and to record the time-of-flight
resonance for the determination of the cyclotron frequency, micro-channel-plate
(MCP) detectors or a channeltron are used.
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the ions hit the electrode and are lost. A quadrupolar excita-
tion at v, converts the magnetron motion into cyclotron motion.
Finally, the ions are ejected out of the trap and pass the gradient
of the magnetic field, which interacts with the orbital magnetic
moment of the ions and accelerates them in the axial direction to
the detector. This acceleration is proportional to the strength of
the ions’ magnetic moment, i.e., to the radial energy obtained by
the excitation. The time of flight after ejection from the trap to
the detector is measured. This procedure is repeated for different
frequencies of the quadrupolar excitation in the precision trap
around the expected value of the cyclotron frequency. By the
determination of the mean time of flight for the different exci-
tation frequencies a time-of-flight resonance curve is recorded
(see inset of Fig. 6). For appropriate excitation parameters the
minimum time of flight is measured at the cyclotron frequency
[26]. For reference measurements, i.e., to calibrate the magnetic
field, ions with well-known mass from a stable alkali ion source
are used.

The experimental standard deviation o(v.) of the cyclotron
frequency v is a function of the resolving power of the precision
trap, i.e., the quadrupolar excitation time 7, and the total number
Nyt of recorded ions. The resolving power is Fourier limited
by the duration of the quadrupolar excitation, which itself is
limited by the half-life of the ion of interest in case of short-
lived radionuclides. An empirical formula [27] describes this
relation:
o(ve) 1 c

Ve Ve o/ Neot - Ty

where c is a dimensionless constant. In a large number of mea-
surements with carbon clusters the constant ¢ was determined
for the ISOLTRAP mass spectrometer to be ¢ = 0.898(8) [17].

(13)

3.2. Reduction of the line-width

Having discussed the standard quadrupolar excitation, what
is the advantage of Ramsey’s method of time-separated oscil-
latory fields? In many experimental situations, the total time
available for a complete measurement cycle has an upper limit,
for example, due to the lifetime of the radioactive species under
investigation. Thus, a precision gain simply by increasing the
waiting time 79 may not be feasible due to experimental lim-
itations. Therefore, different excitation schemes are compared
with respect to the predicted width of the central peak, assuming
that a total time Ty is available to perform one complete Ramsey
measuring cycle. For a symmetric n-pulse excitation the cycle
time is Tt = nt; + (n — 1)79, where 7; denotes the duration
of an excitation interval and t the duration of a waiting inter-
val. For an excitation at the resonance frequency and with pulse
duration t; = 7./n a complete conversion of a pure magnetron
state into a pure state of cyclotron motion occurs, i.e., the high-
est possible degree of conversion, and the central peak reaches
its maximum possible value 1. A frequently used parameter to
describe the shape of the central peak is its full width at half
maximum. Let 8/1(72) be the frequency detuning for which the cen-

tral peak has decreased to 0.5. Then the ratio y = 5/1(72) / 8/1(/1%

Fig. 7. Reduction of the width of the central peak by use of the Ramsey method
for constant cycle time tio;. For symmetrical n-pulse excitation a Ramsey cycle
is composed of n excitation pulses of duration t; = t./n, where t. is the con-
version time, separated by (n — 1) waiting periods of duration 7g. Thus, the total
cycle time is Tyt = 7. + (n — 1)79. The variable y(”) is the ratio of the theo-
retically predicted FWHM of the central peak for n-pulse excitation relative to
the corresponding quantity for one-pulse excitation, x = (n — 1)7o/ 7ot is the
fraction of the total cycle time spent during waiting periods. For comparison
with experimental data the time-of-flight correction discussed below has to be
folded in.

represents a convenient measure by which we can judge the
width reduction obtained by n-pulse excitation as compared
to one-pulse excitation. The FWHM for one-pulse excitation
predicted by the theory is obtained from Eq. (9), numerical
calculation yields 28/1(/2 =0.798685 - Tt_otl- It is worth noting
that generally all relevant theoretical formulae can be written in
terms of the dimensionless product § - ty¢. This implies that the
ratios y(") depend only on the ratios x = (n — 1) - (79/ 7o) and
1 —x = n - (t1/7wt), but not on the actual value of ty. In Fig. 7
the ratios y(") have been plotted for n = 2, 3, 4 as a function of
x = (n — 1)t/ 701, 1.€., the percentage of the total cycle time Ty
spent during waiting periods. From the graph it is obvious that
the two-pulse excitation scheme offers the largest width reduc-
tion relative to a one-pulse excitation. This excitation scheme
is therefore favored for the application in high-precision mass
spectrometry. In the theoretical limit x — 1 the pulse duration
71 = 7¢/n tends to zero, while the coupling parameter g, which
is proportional to the amplitude of the rf-field, tends to infin-
ity, such that the relation 2g - 7. = 7 is maintained. Thus, for
the most favorable case of two-pulse excitation the line width
is reduced in the limit to 62% of the line width obtained by the
conventional excitation scheme. Due to technical reasons like
limitations of the amplitude of the rf-field the theoretical limit
cannot be reached. For example, in the case of ISOLTRAP the
duration of the excitation period can only be reduced to 20 ms
in order to achieve a full conversion from the magnetron mode
to the cyclotron mode.

3.3. Time-of-flight detection technique at ISOLTRAP

As described above, the frequency determination via a time-
of-flight detection technique [5] is based on the interaction of the
magnetic moment of the orbiting ion with the magnetic field gra-
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Fig. 8. The magnetic field amplitude from the precision trap to the end of the
conversion section. Between the two marked points the amplitude decreases
about 90% of its origin value.

dient (Fig. 8). Thus, for a detailed comparison with experimental
data it is necessary to convert the theoretical line shapes for the
energy conversion into time-of-flight spectra, which will be dis-
cussed in the following. The kinetic energy in the radial motions
is predominantly due to the cyclotron motion; the contribution
of the magnetron mode is negligible because of w_ < w.:

Ex(wq) = Ef"(wq) + EX*(wa)
= 1m - (R (tor, 0)0% + R (Tior, wa)0?)
- %m -0y 0 (R%(Tiot, @a) + R% (Tiot, @)
(14)

~ 1 2 2
~ osm- R+(rt0tv wd)w+'

Here, R (tiot, wq) are the radii of the two radial modes after the
quadrupolar excitation has been applied with the frequency wg.

The magnetic moment of an ion with kinetic energy E,(wq)
in a magnetic field B=B- ¢, can be written as i(wq) =
[E,(wq)/Ble,. The interaction with the gradient of the magnetic
field causes an axial force f’z(a)d) = —i(wq) - VEZ on the ion,
which leads to a reduction of the time of flight from the trap to
the detector. This time of flight can be calculated with [26]

21 m 12
= 1
Ty / {2[EO—C]'V(Z)—M(wd)'B(Z)]} d (1)

where E is the total initial energy of the ion, V (z) and B (2)
are the electric and magnetic fields, respectively, along the way
from the trap to the detector. At wg = w, the magnetic moment
is maximal and thus the time of flight minimal. Typical the-
oretical time-of-flight cyclotron-resonance curves for different
excitation schemes using the radial energies calculated from the
equations of conversion (see Egs. (9) and (11) and Ref. [11]) are
shown in Fig. 9. In each graph the time of flight of the ions from
the trap to the detector is plotted as a function of the frequency
detuning 8’ = §/27 with respect to the cyclotron frequency v..

4. Results

To confirm the calculations, i.e., to determine the line-width
reduction and, most importantly, to specify the precision gain
due to the Ramsey excitation method, more than 300 time-of-
flight resonance curves with different excitation schemes were
recorded with the Penning trap mass spectrometer ISOLTRAP.
The ion species for all measurements was >°K+ provided by
the stable alkali off-line ion source. Each resonance consists of
about 2500 ions in order to have identical statistics. To min-
imize ion—ion interactions only time of flight measurements
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2 260 2 260
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6 240 6 240
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E 200 E 220
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200 200
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Fig. 9. Calculated time-of-flight cyclotron resonances for different excitation schemes. The total excitation and waiting time in the precision trap is 300 ms. The time
of flight of a one-pulse excitation with 300 ms duration is shown in (a). (b) Shows the time of flight of a two-pulse excitation, each of the pulses being 100 ms long.
The three pulse excitation (c) is done by three 60-ms excitation periods and two 60-ms waiting periods. In (d) the four 45-ms pulses are interrupted by 40-ms waiting

periods.
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Fig. 10. The measured mean time of flight as a function of the quadrupolar excitation frequency with predicted curves fitted to the data. Here 3*K+ ions from the
stable alkali ion source were used. (a) Resonance of the conventional one-pulse excitation scheme with 300 ms excitation time, (b) a two-pulse excitation scheme
with two times 100 ms excitation and 100 ms waiting time. (c) Three pulses, each 60 ms, interrupted by two waiting periods of 60 ms, (d) four 45 ms excitation pulses

and three waiting periods of 40 ms.

with at most five ions in the trap were taken into account. The
efforts were concentrated on the specification of the uncertainty
in the frequency determination for different excitation schemes.
Fig. 10 shows time-of-flight cyclotron resonances for the one-,
two-, three-, and four-pulse excitation scheme. A fit of the theo-
retically expected line shape (solid line) to the data points allows
the determination of the FWHM and the cyclotron frequency v,
along with its uncertainty év.. To perform these fits the standard
evaluation program of ISOLTRAP [17] was extended in order
to analyze the measured cyclotron resonances using the Ramsey
method.

The fit results concerning the FWHM are presented in
Figs. 11 and 12. Fig. 11 shows results obtained with a two-pulse
excitation scheme of different overall cycle times (7ot = 300,
600, 900 ms). The FWHM is given as a function of the waiting
period. Due to field inhomogeneities and ion—ion interactions
the data points are shifted slightly to higher FWHM values com-
pared to theory. Similar results are shown in Fig. 12 for different
numbers of excitation pulses, where the total cycle time in the
precision trap is constant T = 300 ms. The experimental val-
ues are on average 0.1 Hz higher than the theoretical ones. This
line-broadening effect is due to the electric and magnetic field
imperfections and ion—ion interactions, which were not taken
into account in the calculations described above. A significant
reduction of the FWHM for shorter excitation pulses with longer
waiting periods in between can be observed.

In Table 1 the experimental results are summarized. “cycle
time” is the duration of the total cycle. The maximum FWHM
is the one of the standard one-pulse resonance curve. The min-
imum FWHM is measured using the longest possible waiting
time, i.e., shortest possible excitation time, which is determined
by the maximal possible amplitude of the quadrupolar excitation
field required to obtain one full conversion from pure mag-

4 two-pulse excitation, 7, =300 ms

a =  two-pulse excitation, 7, =600 ms
® two-pulse excitation, 1M=900 ms
N ]
T 3
—
=
=
L 27

300 400 500 600 700 800

Waiting time ¢ / ms

0 100 200

Fig. 11. The full-width-at-half-maximum (FWHM) values of the time-of-flight
cyclotron resonances as a function of the waiting time for the two-pulse excita-
tion scheme is given. The total cycle times are Ty = 300 ms (squares), 600 ms
(circles), and 900 ms (triangles). The bold solid lines are the theoretically cal-
culated values. Since the determination of the FWHM was performed manually
from the fit curves, the error bars are conservatively estimated to be +0.05 Hz.

Table 1
The maximum and minimum experimental FWHM of the different excitation
schemes for different cycle times are given

Number of Cycle Max. FWHM Min. FWHM Reduction
pulses time Tyot (Hz) (Hz) gain (%)

2 300 4.1(0.1) 2.6(0.1) 36.6 (1.7)
2 600 2.1(0.1) 1.3 (0.1) 38.1(3.4)
2 900 1.4 (0.1) 0.9(0.1) 35.7 (4.7)
3 300 4.1(0.1) 3.0(0.1) 26.8 (1.1)
4 300 4.1(0.1) 3.3(0.1) 19.5 (0.8)

In addition the reduction gain is calculated. For further explanation see text.
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Fig. 12. The full-width-half-maximum values of the time-of-flight cyclotron
resonances as a function of the sum of all waiting periods 79 = Zir([) for two,
three and four excitation pulses. The total cycle time is Ty = 300 ms. The solid
lines are the theoretically calculated FWHM values.

netron to pure cyclotron motion. The last column of Table 1
gives the maximum line-width reduction (reduction gain =
(max. FWHM— min. FWHM)/max. FWHM) using the differ-
ent Ramsey excitation schemes. A remarkable reduction of close
to 40% of the normal line-width is observed, similar to the
results in the original work of Ramsey [8]. The reduction in
line-width is especially important in context with the achiev-
able resolving power R =m/Am = v/Av. As theoretically
predicted, the largest possible reduction is obtained by a two-
pulse excitation scheme. However, the relative gain in reduction
depends only weakly on the total cycle time 7y (see Table 1

and Fig. 11).

In Fig. 13 the experimental uncertainty §v; of the measured
cyclotron frequencies for different numbers of pulses and dif-
ferent length of the total cycle time is plotted versus the waiting
time to. Each data point represents the mean value of three to ten
individual measurements. The uncertainty dv. decreases with
increasing waiting time. This is expected due to the decreas-
ing FWHM at longer waiting times. If the cyclotron frequency
uncertainty would only depend on the FWHM, a similar behavior
as observed in Fig. 12 would be expected. However, as men-
tioned before, it is obvious that there is also an effect of the
overall line shape, especially of the steepness of the curve and
the pronounced sidebands, on the uncertainty in the frequency
determination of v..

The excitation scheme used for the data points given in
Fig. 13(a) consists of two, three, and four pulses, where the
total excitation cycle is fixed to 300 ms. The uncertainty is
obviously decreasing for shorter excitation pulses, i.e., longer
waiting times 7¢. In case of the two-pulse excitation it can be
reduced by more than a factor of three (from dv. ~ 27 mHz
down to év, &~ 8 mHz) as compared to the conventional proce-
dure just by changing the excitation scheme to the two-pulse
method. The uncertainty using the three- and four-pulse exci-
tation scheme decreases to v, &~ 13 mHz and dv. ~ 15 mHz,
respectively.
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Fig. 13. In (a) the uncertainty of the measured cyclotron frequency is given
as a function of the waiting time for the two-pulse, three-pulse, and four-pulse
excitation scheme. In (b) the uncertainty of the measured cyclotron frequency is
given for the two-pulse scheme with a total cycle of 300, 600, and 900 ms, where
u = (n— )19/t is the fraction of the total cycle time spent during waiting
periods.

The result is summarized in Table 2, where the maximal and
the minimal uncertainty for all investigated excitation schemes
under identical experimental conditions are listed. As for the
investigation of the FWHM, the scheme where the largest reduc-
tion in the cyclotron frequency uncertainty can be achieved is
the two-pulse Ramsey scheme. Comparing the two-pulse exci-
tation scheme with 300, 600, and 900 ms total cycle time, the

Table 2
The maximum and the minimum experimental uncertainties of different excita-
tion schemes and excitation times are listed

Number of Cycle Max. uncertainty Min. uncertainty Improvement

pulses time Tyot (Hz) (Hz) factor
2 300 0.027 0.008 3.4
2 600 0.017 0.006 2.8
2 900 0.010 0.004 2.5
3 300 0.027 0.013 2.1
4 300 0.027 0.015 1.8

The improvement factor is given in the last column.
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tendency is similar to the results obtained for the FWHM of the
resonances (see Fig. 13(b)). The slightly decreasing gain fac-
tor for two-pulse schemes with longer total cycle times must
be assigned to the relative decrease of the statistical uncertainty
in comparison to the constant systematic uncertainty. Asym-
metric excitation schemes where the individual Ramsey pulses
have different lengths have also been investigated. However,
the symmetric two-pulse excitation scheme remains the best
one in respect to line-width reduction and uncertainty gain (see
Table 2).

5. First online mass spectrometry application of the
Ramsey method

The first online mass measurement by the Ramsey excitation
method was carried out for the short-lived nuclides 3¥Ca [28]
and °Ca, which have half-lives of only Ty /2(38Ca) = 440 ms
and Ty, (*°Ca) = 860 ms, respectively [29]. In order to suppress
38K +contaminations, the 3¥Ca+ ions were delivered in form of
the molecular sideband 38Ca'®F+. In the inset of Fig. 6(a) res-
onance curve of 3Ca!°F+ is shown for which the ions were
exposed to a continous quadrupolar radiofrequency excitation
of 1.2 s duration. The cyclotron frequency of this resonance has
been determined with an uncertainty of v, = 21 mHz. Fig. 14
shows a resonance of the same species with the same number of
collected ions (& 2500), where a two-pulse Ramsey excitation
scheme was used. The two excitation pulses had a duration of
100 ms interrupted by a waiting period of 1s. Thus, the total
time Ty = 1.2s for which the ions remained in the trap was
identical. Here, the cyclotron frequency was determined with
an uncertainty of only §v, = 6 mHz. In comparison, the statis-
tical error in the frequency determination could be reduced by
more than a factor of three, keeping the number of ions and the
time of the excitation cycle constant. This is a tremendous gain
factor, especially for mass measurements on short-lived radionu-
clides since the required measurement time to reach a certain
statistical uncertainty can be reduced by almost an order of
magnitude.

390 - SQCa1QF+
£ 300+
=
=)
=
5 280
()
E
§ 260 {
O
s

240 ¢

3 2 -1 0 1 2 3

(v-1567016.02) / Hz

Fig. 14. Time of flight for 3*Ca'F+. A two-pulse Ramsey scheme was chosen
with two 100 ms duration excitation periods interrupted by a 1 s waiting period.
The solid curve is a fit of the theoretically expected line shape to the data.

6. Conclusions and outlook

The experimental studies described in this paper demonstrate
that Ramsey’s method of time-separated oscillatory fields can be
applied to excite the ion motion in a Penning trap. The Ramsey
technique improves significantly the statistical uncertainty in
high-precision mass spectrometry on short-lived radionuclides.
We performed systematic experimental investigations for differ-
ent excitation patterns with two, three, and four excitation pulses.
We observed the expected reduction of the line width of almost
a factor of two along with a gain in precision in the frequency
determination. This leads to an important gain in precision of the
frequency determination. The new findings were demonstrated
for a stable nuclide as well as for a short-lived radionuclide in
an online measurement.

An optimized Ramsey excitation scheme with two pulses of
short duration interrupted by a long waiting period results in
an improvement of the statistical uncertainty in the cyclotron-
frequency determination by more than a factor of three compared
to the conventional scheme, without any further experimental
changes as, e.g., the number of detected ions for a resonance
or reduction of scan detuning width. Since the Ramsey method
opens a door to higher precision in Penning trap mass spectrom-
etry, the application in other Penning trap setups is already in
preparation and under investigation, as, e.g., at SMILETRAP
(Stockholm) using highly charged stable ions [10] or at SHIP-
TRAP (GSI, Darmstadt) using short-lived fission fragments
[30]. It can be expected that the Ramsey method will find a
wide-spread application in high-precision mass spectrometry of
atomic nuclei.
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